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ABSTRACT

The decay of earth satellites has been analyzed

using both a numerical integration and an approximate

method. The numerical integretion utilizes the vari-

ation-of-parameter method with second order earth

gravitational potential. The approximate method was

developed via conservation of energy equation but for

unexplained reasons would not agree with observed

natellite decay without the inclusion of an additional

linear eccentricity factor. Including (c/ 100)0-3 66 per-

mitted the approximate method to agree with numeri-

cal calculations and observed data. The usual re-

striction of approximate methods at low eccentrici-

ties was removed by the addition of a non-linear

term previously computed numerically. The linear

approximate method was found to be valid for linear

eccentricities larger than 150. The effect of a vari-

able drag coefficient and projected area was found to

be an important factor and of the order e 2 .
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I. INTRODUCTION

The motion of 8atellitcs is no longer a new subject. The flood of

papers and notes in current journalt, would indicate that considerable at-

tention has been given to the problems of space flight and atmospheric

re-entry, In many of these studies the analysis pertains to one of two

aspects: orbital motion or re-entry. Less attention has been given to

discussion of the satellite's motion throughout its entire lifetime. In

particular, analysis of the transition flight between orbit and re-entry

has been lacking. 'Thi.s study has been a two-pronged analysis of satel-

lite motion with the object being decay prediction. T'he analysis is two-

pronged in that both an ipproxiniate method which pernits graphical or

similarly equally easy solutions and refinted methods requiring nunterical

integrationi by inodern q(onputing machines are enlipoyed.

The l aplp)roximlate itoethod reviewed and implroved by ain emlipirical

fIc tor, is limnited ill long raltg prediCtioll by theV nittture Of thie still's illn-

fluencte upon thie earth's atmosphere. Thi s is imiportant, htiwt, ever, only

abiove 300 kit. The 'lrform of tihe soltutions obtainled th'rough the ,tpJ) roxi-

niate liethod is well suited four analysis of the grloss satellite lnotion, dIc -

City, a'Wd iatlllosphleric dtilsity. More df tliled info rmiation is to It,

gatheired fronm the numuerical solutions of thic gene r; ital 0 r Jev-dimlitliesio nll

v•plations. The lihree-dilliensiional eqluations of mnotion equate telt- satel-

litc acceleration to the pert ourbing function. The pertirbillfg function is

made ulp of tile first and seconld orders of thie earthi B gravitational potell-

tial, a~ld lift and dragt forces. The orientation of the satellite in space is

also noted. The second order diffe rential epquations aret redticed to six

fiirst oe du.r differential eqtlltions using the well known variation-of-

parannecter technique. The solution of these six equations sitoul taneou sly

is Ob1tli1Wd 7 ullIilerically with an IBM 709, The variation-of-pararnceter

perturbation t cclnique is well suited for describing the satellite motion

throughout the transition flight but is limited to the order of several hundred

revolutinns by nmachinc tim,'. Since this is a numerical solution, the

,nalysis of sa'lit�- lmotion consists in observations of several cases, This

calcutl]ation d•-scribe s till seeulair and pe riodic motion of the orbital elements.
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The numerical solution also serves as an "exact" solution to check the

approximate method. Also the approximate method is corrected to

agree with the numerical solution.

II. FORCES ACTING ON AN EARTH SATELLITE

A satellite launched into an orbit about the earth travels through

a magnetic field, a radiation field, and the earth's atmosphere. These

fields can cause either a retarding or an accelerating force. The most

important force is the drag and lift created as the satellite passes through

the earth's dense atmosphere. Each of these forces will be examined

in detail in this section. Four fundamental satellite shapes will be con-

sHdered; sphere, flat plate, cylinder, and prolate ellipsoid. Most any

actual satellite can be thought as a composite of one or more of these

shapes. The final otutconme of this section is the writing of the perturbing

function.

A. Forces due to the presence of celestial bodies

1I The vit rIth

'l'h• g ravilational potential of the earth can be expressed

as an infinite series

., iQVnO - _KM . )," •t nsn ' ( •.1)

r , n rl r

where V/ represents the latitude and R1 the earth's equatorial radius. The

equatorial radius is given as 6378,145 km. The earth's gravitational con-

stant, KM, is equal to 3.98614 X 105 km 3 /sec 2 . The coefficients of the

series were originally designated by Jeffrey (1) as J and D, where

-- 6
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w 8
J4 =-T-D

The J and D coefficients have been reetdermined since that time by

Cornford, King-Hele, and Merson (Ref.2) through observations of the

secular satellite orbit motions. The ctrrent values are

J [I624.6 k 0.3] X 10"6

1) = 15.7 1. 0.8l X 10'6

Be.fore the secular motions of the earth satellite were available

for study, the odd harmonic terms of the series for tile earth's gravita-

tional potential were assumned to be zero, i.•., the earth was thought to

ble Hy nletric ;about thit equator. Now it has leen fihown that the odd

hatritmtitus (1C) c eist. 'The first hii rlnloni(: can, however, be, made Fe ro

by placing the axis: syst tat the center of mass. When the center of

atia Hi is ntil at the• point of symmte try, uther difficulties will hie en-

c o'unterrle in dete r i niing the h, i ght from the earth's surfac e an:id tihet cor-

reHponding density.

TIli force per 11nit mdass acting on thle satellite dtle to the ciaith'is

g raVitationatl potential is the pot ential gcadivi Fe .... VTU. With spherictal

pola r coortlin;Ite, centl ered at the center of mass, th. Com-iponelnts (if the

g ra vita t ional force along the radius, latitude and longitude, respectively,

"F .ur. K (35 sin4

-L = r r -= - - I + J (I - 3 sinz ¢ (•.L

- 30 sinz + 3)+ +

F 
(2.2)

I - U J KM (R- sinz •i + 2D KM(r -l- sin Z- (3 -7 sinZ )+
Tm 4 r \i5

TlR 465 3



*F 1 aU 0
7W rasi-'•n'T WX--V

It is usually more convenient to use a coordinate system located

in the orbit plane rather than the geocentric system above. The axis

- . system in the orbital plane is designated r, 0, ce (see Figure 1). The

direction of c0 is In the plane perpendicular to the radius vector and a

is the direction normal to the orbital plane. Several, relations between

the two axis systems will be useful. These can be found through the

use of spherical and plane trigonometry.

N

EQUATORI AL

0ORB ITA L " - --- !-' -- °PLANE

T

Figure 1. Relations between geocentric and orbit axis system
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These relations are

(1) cos - cos(% -)cosý0

(Z) sino = sino• sina

(3) cos& = cos i' sinli

(4) sin*J i- ----••

tail¢
(5) tan -t an - -

With the axis system located in the orbital plane, the components of force

duw to the earth's gravitational potential are

r Km~r '
I- + ( ) 1 -- sinz -ina T a)) (3 5 Sitl4' Sin4 a

30sinz € sin" r + 3) + .

2 J KM W pinz¢ yil 4,, c -)- 4- RKM [ 8 sin4re sin3 0 coss, (2.3)

- asinz a sin + cos(l

I'•liz D i•4 r

- J KM sin l sil a cosa + -v- KM[ 8 sinl l sin a cos a

- 12sine sina cosal
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In addition ti) the forces due to the earth's gravitational potential,

there is a force due to the interaction between the satellite and the earth's

magnetic field. This force was, for example, predominant in causing the

motion of the Tiros I spin vector (Ref. 3). Previously (Ref.4), the only

interaction considered was due to the cutting of the earth's magnetic

lines by the induced electrical charge. Another interaction which should

be included is between the satellite internal current and the earth's mag-

netic field. Such a force is described by

F j X B,

In particular

(IF 0.10 i(dSX 13) dynes

where the current (amperes), i, flows in a length (centimeters) dS of

wire in t magnetic field (Gauss)B. For Tiros I, there is an equivalent

current of one ampere flowing around the eight-foot base diaweter which

produces a force of

F = 43 sine O dynes

wheru 0 is the angle butwten the current and the magnetic lines. This

forc:e is coli)par;ible to thi drag force, The force is, however, not always

of the same sign. The existecnce of this force resulting from an internal

current is extremely imptortant and bears further examination.

Z. The Sun and Moon

The sun exerts considerable influerce upon a satellite,

either by gravity, radiation pressure, or indirectly through its influence

upon the earth's atmosphere. The nature of these influences has been

discussed in detail by many authors. The conclusions to date are that

atmospheric heating is the means of increasing the density during exposure

to the sun. Another observed phenomenon associates an increased drag

with solar storms. This latter correlation has lessened the hope of de-

veloping long range decay prediction since solar storms are as yet un-

TR 465 6



predictable. The obvious escape from this difficulty is to limit the analy-

sis to altitudes below 300 km where the sun's influence has been ob-I

served to be small or non-existent. Other difficulties are encountered

S.... - - - __also above 300 km. At extreme ranges,-of -the order of the earthts radii

or more, the solar gravity field and radiation pressure, as well as the _ -

lunar gravitational field, must be included in the perturbing function-- .... - -

The sun and moon have an influence on the earth's at.-

nmosphere -below 200 kilin the form- of-atmospheric-tides-- Atmospheric

--tides have beenidcltected-from -pressutre-inea suremenits to occur twice a

day and hlave ania-mplitude of 2 nim Hg pressure change. This is equiva-

lent to a - kni altitude. change. _Observations of satellites, have not a-s yet ..-

- ..revea-luld a behavior which can he attributed to. atmospheric._tides ... -- t-is-un-

I . .k ely _that a Va riati 0n of 2 km would be important in view of thle prtesent

state of knowledge of tilth varying ionosphteric density.

13. Furcus dtue to the presence of the earth's atmosphere

IThe satellite passing through the enarth's atmosphere experiences

;ta.* rodynaillic forces of lift and drag as well as nionientiS about the center

of gravity. These a crodytniLaic forces and nionients call seriously effect

tilth satellite orbit. The effect of drag is well known but whether lift and

moinlts augmetint or diminish the decay is not so well understood. An

analysis of the effects of these three quanltities on the lifetiiTe of a satell-

lite is presented in this section. First, however, the earth's atmosphere

should be specified.

In free molecular flow, the number and energy state of the air

particles is of interest. Usually, the density is expressed functionally

as an exponential

P P0 exp - 12.5)

where H represents the scale height defined as

I TR 465 7
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r 
-T

H -R---T-ROTM ('.,
gM

As can be seen, the scale height is a function of the atmospheric tempera-
ture and molecu-lar mass. Consequently, Equation (2.5) is limited-to an

altitude closetotAhe refrence altitude (b0 ). Above 300 kin, the variation
of the scale height and. de sityare nearly-linear and Equation-(,2.5)-is........ .....

valid over a range of 100 krn above the reference altitude. As anexample .. ..

starting-at-300 kmi.: the-density-using Equation (A-.5) will be 40 per cent too

low at 360 kin. The error is much larger if the reference altitude is be-

tween 100 and 300 km'. This is to be expected since the region between

100 and 300 km is the transition between two functions which fit the at-
- ---. _ . . mospheric data. _As_at (utxt.hier._xat)le,_f-oi a refer ence-altitude-at_2•0_ kin,

..... _the error at 26-0 km is about 50 per-cent too low.

An alternate expression which more closely fits ob.erved values
ahove 350 kill is a powD r funclion.

P po PO Oh (2.7)

The value of n which fits the 1959 ARI)C model atmosphere is

about 1/6. A smoother .representa tion would result if the valwie of 6.38

i.4 uisd. Figure ? is a compariison of tiis funution with the atmospheric

model,

In place of either of these two equations*, the actual atmospheric
model can be utsed. Iln m-iachine computations such as ulsfed for this study,
a subroutine to look up and interpolate the atmospheric table can be in-

corporated. This forni is necessary in attempting to preserve accuracy

throughout the computations.

Each of these three methods inherently assumes that the earth's

- :atmosphere has the same shape as the earth. Logicaily, it would be

expected that the oblateness of the atmosphere would he different from the

oblateness of the earth. A more exact shape is currently being evaluated

by Jacchia (Ref. 5).
In add'tion to the density, a model of the atmospheric tempera-

ture and mass is required. These two quantities are sometimes grouped

TR 465 8
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together as the molecular-scale temperature. The following is the

general form of the molecular-scale temperature function (Ref. 6).

TM =(M)b + LM(H - FIb) (2.8)

where

11 = Geopotential altitude in km

T M = The molecular-scale temperature is 'K at

altitude I!

LM = dT M/(11

I1 1, Geopotential in km at the base of a particular

layer characterized by a specific value of LM

(''M) -- The value of T1M at altitude H1

The values of the coefficients are given in Table 1.

Table I

lumnplerature-lleight Profile of 1959 ARI)G Model Atmosphere

II (TM)) I'm K ki

79 165.66 0.0
90 165.66 4.0

1(05 ZZ5.66 Z.0
160 1325.66 1.0
170 14Z-5.66 0.5

ZOO 1575.66 0.35
700 3325.66 0.35

1. Drag forces

The drag force acting on the satellite is proportional to the

dynamic pressure and the area. The factor of proportionality, termed the

drag coefficient, is a function of the relative velocity of the satellite with

"respect to the atmosphere, the density of the atmosphere, and the surface

conditions of the satellite. The density of the atmosphere dictates which

aerodynamic approximation is used to describe the drag coefficient. The

TR 465 10



regions of flow to which each approximation is applicable are commonly

separated by the Knudsen number, a non-dimensional ratio of the mean

free path to some pertinent body dimension, Experiments in free

molecular flow (Ref. 7) indicate that the "so-called" free molecular theory

becomes applicable when the Knud'en number is greater than two. As

discussed previously (Ref.4), free molecular theory is, on this basis,

valid for all satellite orbits above 130 km (assuming a satellite length of

Z5 in). The launching of larger satellites such as the 100-foot balloon,

will require the addition of a transition drag correction to the free

molecular flow theory as th. satellites descend below 160 kin. The de-

pendence of the drag coefficie nt on the satellite velocity and surface con-

(lition will not bu, derived from first principles in the succeeding sections.

For a more dhetailed discuttision of the drag coefficient, the reader is

referred to Itef s. 8, 9, a nld 1

(a) •'stiniatioic of molecular speed ratio

One of the ha~.4ic dimensionless parameters in the frete

molecutlar flow is caliled the inole'ulatr speed ratio, and is defined as:

V
v

v
M

The satellite velocity is denoted as V and the most probable

molecular speed as v. The molecular-scale temperature, and the gas

constant 11 are obtained from Ref. 6.

A range for possible molecular speed ratios encountered

by satellites at various altitudes is of interest. The minimum molecular

speed ratio will be defined in terms of Vcr,

S r
Vc

Smin v---t

where Vc is the circular satellite velocity at a distance r from the earth's
r

center and is defined as

TR 465 1 I



VVc
- --.. ,. - ._-

For vehicles in elliptical orbits, the total velocity is

given as . . . .. . ..

-- - 1 /a . . . .. .. . . . . . . .... . . . . . . . . ..

. ._-.K M (I.. . (2 9) f.... ..S-'--: i •'-cos f . ....

-The-earthIs gravitational constant is represented as KM. The velocity

at perigee can be expressed as a function of the circular velocity by

V =Vc 0l+ 0) (2.10)
q - -r- ..._

It can be seen that the velocity at perigee for an elliptical

orbit of low eccentricity (such as must satellites around the earth) is

only slightly larger than the circular satellite velocity at the same point,

"and that the mininn-um speed ratio is a good representation of the actual

molecular speed ratio at the perigee points.

The molecular velocity as a function of altitude is il-

lustrated by Figure 3 while the values of S Iii as functions of altitude

are plotted in Figure 4. It is seen that in the 150-600 kin altitude range,

the range of interest for present earth satellites, the mininutm molecu-

lar speed ratio ranges betwven six and ten. The most probable mnolecu-

lar speed increases from a value of 0.782 km/s.c at 150 km to I.-85 km/sec

at 600 kmi.

For conditions of diffuse reflection, the drag coefficient

will be based on the re-emisEion speed ratio, Sr, The velocity of re-

emission is not clearly defined. Most likely it is a function of the sur-

face conditions. However, the only readily available measure of condi-

tions is the surface temperature. Consequently, it is usual to assume the

velocity of re-emission to be

r skin

R 4-

ST1 465 1,2
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The wall temperature-variet from recovery temnperature
to ambient gas temperature. Above an altitude of about ZOO km the heat
transfer due to the incident molecules becomes less than the solar flux.
Consequently, tile wall temperature is determined from a radiation.

- - balance. Since it is unlikely that the emissivity of the satellite can be
--- • . .. made less than 0.01, the i 

-a -im 
-surfare-tempetature.above-200.ki. ...

will be 1Z50-°K- This temperature will always be-les8haz' the fre- -
Sstream-temperature above '00 km in which ca-ge the r•e-emission speed

ratio can be specified as equal to the incident molecular speed ralio.
For flight below ZOO knm where free molecular heat trans-

Sc fer is important, the re-emission speed ratio can be coMnputed (11ef. 7)S.... .for-the-extreme cast. of- no heat transfer. This neghtccts effect s-f mradi-
_-- . .. ... .--ation and-condu, tion. Stalder obtained experimental verifCicttion for this

- . condition using a Knudsen number of two. The functional relation b)otwevi
the two .ieed ,atios can be approximated as

S : 1.6,15..0,18(6 -S) ; <6 (2..11)

This til to Say, the re-emiission spevd ratio is always )luch smaller th,1 n
the incident muolecular speed ratio (set Figure 5). The effectts of conduc-
tion andn radiaton l art expected to drastically redluce lilt. surface t.nipvra -
t1.re anid thereby inc rease, the rc-en-tlissjirn speed ratio. If recovery tern-
pe(ra ture was rca lehd Or ill effect, radliatioln and condluctio n Wre ilegligib e,
the drag due to thit re -emission could contri hUte a maximnum of 40 pcir cent
of the total drag force as will be seen shortly. In practice this will not
occur but it is interesting to note that the drag coefficient could beconme
atrnospheric dependent through a variation of the re-emi sion speed ratio. -

(b) Estimation of drag coefficient

Initially the satellite will be in free molecular flow which
is assumed to exist when the atmospheric mean free path is equal to twice
the characteristic dimension of the satellite. Experiments have been made
"which verify thiis assumption. When the Knudsen number becomes less

TR 465
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than two, some type of transition flow such as slip flow occurs until con-

tinuous flow is reached at Knudsen numbers of about K = 0.01 for or-

bital vehicles. This transition region will most likely begin as the satel-

lite is still orbiting. As an example, the transition point (K. = 2.0) for

the Discoverer satellites is at abo,,t 130 kil. Below 130 km drag coef-

ficients based on experiment or one of the theories such as those which

Include one collision between air molecules would be used. In any case, the

general trend is to decrease the drag coefficient from the free molecular

condition. As will be mentioned later, at an altitude of 130 kin, the satel-

lite is about to begin its terminal phase. Numerical calculation using free

molecular flow drag coefficivnts indicates the satellite traverses 3/4 or

less of an orbit in descending from 130 to 90 kil (see Figure 44). The er-

ror involved in using free molecular drag coefficients in place of the more

realistic slip or continuum flow could not cause an error greater than two

revolutions. This is usually negligible for lifetime predictions. On tile

other hand, if an impact point is desired, the more exact drag coefficients

will have to be used.

The basic as sumiption of free molecular flow is that the air molecules

have it Maxwellian velocity distribution superimposed upon the uniform mass

velocity, Then, by noglecting collisions between molecucles, the flux in-

cidence upon a gfiven a r''a is computetd. A drag, force altso occurs in tile re-

fle-ction of niuleculCs at the surface. It is necessary, however, to m"ake an

ustimate of the surface conditions in order to predict the mode of reflection.

Usually a combination of specular and diffuse reflection occurs. The drag

coefficients for fottr commnionly encountered shapes are described below.

i. Sphere

With specular reflection from the surface, the free molecular

drag coefficient for a sphere based upon the frontal area is

2:52 + I exp( + (4S 4 + 4S2  1) e(2.22)
Ds -r s3 4S
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For a diffuse reflecting sphere

(2d + 1) OS4 + 4S 2 -1)
D d 7T S3 + e rf.(S) 13)

IS--+
r

"ýk here S ris the re-emittved speed ratio.

iThe combined drag coefficient is

C =C +N z\f-I
cD P + (2.14)

13 r

where h is the proportionality constant b(,tw, (l diffuse and specular

rufl(:ctions. In general, this coefficient is assumed to have a value be-

tween 0.8 and 1.0.

ii. Flat plate

Though no satellites lpresently in orbit arc approximated

;.s flat plaitS, ,neve rtheless cert;ain portions of the satellites are flat.

As a;n exanip)e, the tumbling, cylinder will at f'requelut intervals project

a flat enicd to the airstreram2 .

'f.ii drag ( :)veficients for a flat plate at an angle of attack,

ry, with the wind velocity ,ect 0or is

1;D sin A 1  - sin A exp( -- Sz sin2 A ) + 4 sinl A +
s L4 S

+ ) erf (S sinA)

and

C = •--- exp( -S sinA ) + 2sinA n A I+ erf(S sinA)-- • S(2.16)

+ %I1 sin? A

r
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The total drag coefficient is

CD= k CDd + (X- )cDS.17)

iii. Cylinder transverse to the flow

The rnost important basic shape which closely resembles

many presently orbiting satellites is the cylinder.

The drag coefficient resulting from flow transverse to the

cylinder based on the frontal area is described below.

+ SI) fs\G2 (1) + I0 + z-/

1..8)

Tis. shoate rt(211ht~ i soid ftl:r;enr oe a

TIi, Ehe r(les +811] l t - n a

As i-alcss h oa drag is •.1

"be useful at timnes. The surfav area of a prolate ellipsoid is expressed
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I T/Z __/

16s si 0f (a 0 0  snCosO IJ(
cD _ l__ 1fa

specular rv -s

+ yS2 cosaO ) erf ( [sCoso0)]+ S Cos 0 expi Cos 2 o do}1

G 8 1 c (tz coszo)I/z sin 0 osO(1 +
diffuse A/7" • -

+ 'S erf)(fI7 M cosO) +0 r -,fxp (-J4Z COR20

L)M [KC (i c 4r _' ) j4]

Thec drag coefficientsi for the four basic shapes have been presented

in Ituris of thte iim-lecular speed ratio and the satellites projected area.

What is genlerally dfone is to linearize the functional representations by

a ssuming S > > l. This corresponds to hypersonic flow and approaches

the Newtonian theory. This assumption is only valid if the accuracy de-

sired is to the order of the orbital eccentricity. For higher order ac-

curacy, such as that of C2 or higher, it is essential that more exact repre-

sentations of the free molecular drag coefficients be employed.

The form of the drag coefficient is only a part of the dilliculty

encountered in analyzing the satellite drag. The orientation of the satel-

lite itself is also important. However, when the hypersonic flow assump-

tion is made, the drag coefficient per unit frontal area is identical for the

sphere, cone, and cylinder. Thus, when the analysis is only to order of the

= eccentricity, the satellite orientation is not important. In the attempt at re-

fining the satellite decay predictions, higher order terms are included in the

orbit equations and in keeping with this increased precision, the satellite

orientation as well as the complete expression for the drag coefficient must

TR 465 20



be indicated. In the following paragraphs attention will be given to

evaluating the drag coefficient on an actual satellite,

The most evident way to begin is to analyze the space and earth

stabilized satellites. At one tine it was thought that a satellite could

be stabilized in space in much the same manner as a gyroscope. This

assumption was not upheld, as was proved by the observation of the

rapid motion of the spin axis of Explorer IV about the celestial sphere.

This posed a dilemma for photographing, the earth from Tiros I. It has

been substantially demonstrated (Ref. 3) that effects of differential

gravity forces cannot be neglected and are the cause for the secular

motion of the spin axis. The spin axis in Explorer IV was observed to

move as much as three degrees per day and to have reached a nmaxinmunl

deviation from the initial orientation of 15 degrees on the celestial sphere.

In addition to the gravity torque there can also be a magnetic torque acting

on the satellite's span axis. It is safe to say, serious secular movemnents

of the spin axis of a stabilized satellite do occur which will influencte the

drag and consequently the decay of thte satellite.

As ;an instructive example nevertheli ss, consider a 8pace stabil-

ized satellite. Th'leh importince of the satellite oriettation will then he

demonstrated. Consider a at ellite such as 1958 Zeta which is an Atlas

missile. Assixne this satellite to be spin-sttabilized with the spin vector

aligned with the flight path at the initial perigee point. Approxinlately

one week later, the perigeet will have regressed some 58 degrees. Refer-

ring to Sketch I below, it catn be seen that the drag coefficient will have a

value somewhere between the two extremes. A way of representing

the actual drag would be to assumne that the drag coefficient depends upon

tile argument of the perigee.

CD =CD +'(CD -- ) cos (wo w) (-.43)

For this particular example

CD "1.70 + 0.65 icos(•co -W)l (Z.Z4)
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EO CD 2.3 5

Sketch I

h'e ,notion of the a rgUmtuent of the perigee obviously can attribute

a aiax IIt Iullm error zof 19 pIWr 1:, 01 on the 1 50th revolution when w a - w

90( degreues. This should show lhat the drag coeutficieont is dependent

upon the orbital elements antid oildtl not be included as a constant.

To a much lesser degree, the same can be said for an earth-

Ntabilize( satellite. In this case however, tile body axis will move with

respect to the velocity vt ctý)r only a few degrees during the portion of

high drag encounter. This examuple closely approximates the concept

of a constint area and drag coefficient.

(c) Estimation of lift coefficient

In addition to the drag, lift. in many instances will also be present.

Depending upon the vehicle orientation relative to the wind velocity, the

lift will act to either increase or decrease the centripetal force. Generally,

it will also have a component in the direction of the side and drag forces.

The drag due to lift will usually be a small fraction of the total drag. Even

though the side force due to lift is also small, it can create serious
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perturbation in the orbital motion. This section will deal with the mag-

nitude of the lift coefficient and determine the effect it has on the side

and drag forces.
The first consideration is of a stabilized satellite. The

orientation of the vehicle in this instance will be fixed in space. Con-

sider the axis system of Sketch 2:

T

Sketch

The .sattlliUt orientation is in reference to the r, f, a co-

ordinates. For a spin- stabilized satellite,, the angularz momentum vector,

TR 465 3
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if., is fixed in 8pace.

The momentum vector is located with respect to the N-E-y inertial

axis. Using Euler axis transformation, the momentum vector can be

specified in terinR of the ca-w-11 axis. The transformation is as fol-

lows on the Inext page.
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-ICosl sill Q 0 HV

HEI sin s -- sin 1 0 H

HiNJ 0 0 1 HN

H 0 1 0 U
iNZ sin w 0 cosw H NJ)

14 0 0 i II

(0w) Hil a: CO )Q( N)
The nmomentumI vector hIis now beI)Cn located with respect

to the orbit perigee. Further transformations are required to locate

it in terms tof the actual satcllitc pmsition. The satellite is located in the

orbital plane by the angulatr meansure fromn the perig(ve. In this regird

Hli - cos f 1I + sill f If12

I=Cos f 1 -- sin f It

The angular inoinentumn vector has now been located

with respect to the satellite position. The velocity vector is also located

with respect to the instantaneous satellite position as

V =tr
Vf = V - r l e cosa (Z.2)

V = r 0 e sina cos 4I
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The angle of attack, yaw, and roll can now be determined

as the angle between momentum and velocity vectors. The angle of at-

tack is

A = (2.2 7)a
JVfj *IfI

Similarly, the anglcs of roll and yaw are

V H

Vr r

V 11
roll M G .. - (4.C7)cI%1' I~'aI

l Aft forces can be: created on unsym1etric shape,:. One

usually thinks of the flat plate or cone at an angle of attack. Following

the Same presentation as for drag, the lift coefficient for diffuse refit'o-

tion from a flat plate i s

c L)s A (S * f n A c os A (.8
t; -•z--"erf (S sin A) + "• sn o A(.

r

The lift coefficint for the case of specular reflection is

C cos A 4-_ sin A exp( - S2 sin' A) +

(Z.2-9)

+ 4(sin2 A + 1 r .Ssi1A

The actual lift coefficient lies between these, two, i.e.,

CL '-L + {K L (Z.30)
d 5

The lifting force is always smaller than the drag force
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at moderate molecular speed ratios. As an example, for S 6, the

L/D<9 0.20. Though the lift force is small relative to the drag, its

effect in the radial direction may be important during the final stages

of decay.

2. Perturbing functions

The preceding sections have served to formulate the

basic quantities needed to state the force equations. It is the purpose

of this section to combine the various factors of gravity, drag and,

where applicable, lift into a form amenable for later use in determining

the motion of a near-earth satellite. The equations will be written with-

out proof in the orbital plaw: coordinate system.

rrK it is

r rM + (I "-- 3sin2 4, sinz a) -

( (35 ,sin4 e. sin 4 a 30 sin2  4, sin? t + 3) -
rt

G v~1I) . p A 4 A (V4, - r QcoH a)

(F.31)

m sin 4 cos 4 sinz a-- * KM - 8 sin4 a Hin3 4,cos,-
7 --6l KM [28si

-1- sin2 a sinlco ] -- " p V \-(.-- (V4 - r 2e os a) +

(CLA
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F ZJR2  DFC1 '0R9 D R40

.0 KM sin4 cos a sin a-- " _-T'KM [28 sin3 4sin3 acos a-

--lsin 4 sin a cos a])- 'pV (r p sna cos () D

III. EQUATIONS OF MOTION FOR A NEAR-EARTH SATELLITE

The force terms and the perturbing functions havc been developed

in the preceding section and are now to be equated to the rate of change

of momentum. In general, the equations of motion in spherical coordi-

nates are given as

V2 F

r M

F
+ i ~) =n (3.1)

F
V S]r- r

where

4, + 0 cos a (3.z)

Ssin a (3.3)
r s--•n-

These equations are non-linear second order differential equations

and conceivably could be integrated numerically as they stand. This,

however, would be in complete disregard of the brillant work of the clas-

sical astronomers. The classical astronomers developed several pertur-

bation techniques which when applied to the equations of motion offer many

particular advantages. The prominent special perturbation techniques

which are applicable wo the motion of a near-earth satellite are Cowell's,

Encke's, and variation-of-parameter methods(Cowell's method is not a

TR 465 28



perturbation techniquv but is grouped as such when comparing the relative

merits of these three prominent methods).

"The choice between the three methods depends upon the particular

trajectory to be encountered. Cowell's method, which is a direct integra-

tion of the accelerations, is suited for large perturbative forces. For

such forces such as rocket thrust, Cowell's method will afford the least

number of computations per step but will require many steps (Ref.. 11).

It has the disadvantage of requiring a large number of significant figures.

Encke's method is best suited for moderate perturbations acting only dutring

a segmnent of the trajectory metch as thrust forces applied intermittently

while in orbit to provide stabilivation or in orbit transfer and turning.

I'ncke 's method is a true perturbation technique wherein onily the acchlera-

tion differen:e between the actual and reference orbit is integrated. This

integration of only the departure from a reference orbit permits using

fVwer significIant figutrtes and larger integration steps. The, natUral iin-

provfmu, t to lnt'ktu's mettho~d was the use of it continuotusly challging

referenlce orbit. This is known as thet variation, of-1pat r•am ettcr nethod ;tilta

is stuited for small perturbation forcev: acting throughout the orbit. T'hils

Meithod perlits haklgV integration steps but the eo m pula tion s aret exten -

Sivte int each sitep. As this study is ctniei'n' d with the s;te!llite', motion

Iliill° r and aLt its demllise', th•l v;rition f-laram r mlltethod tfford- tilt-

|iNlimum of c omputattional titm and has fi•,xibility and control of the a;ssioci-

atedI comIputational errors.

The Vmriation-of-parameter no.thod is the c:omputation techni(l•ue

used in this study. Tlhie refe rence motion of the .4atellite is reprcsented

by a set of orbit parameters which, in the absence of the drag forces,

would be constant from revolution to revolution. The drag forces, how-.

ever, cause these pa'ramneters to vary, and the differential equations of

motion are derived from these parameters. These differential equations

are then integrated to describe the satellite motion. The description of

the reference orbit is provided in the following paragraphs.

The reference orbit, sometimes referred to as an oscillating or

instantaneous ellipse, is specified by three parameters. In place of the

usual eccentricity and semi-major axis, the dimensionless parameters
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p and q are used. The parameter p is the semi-latus rectum of the oscil-

lating ellipse and also represents the product of velocity and radius.

L (3.4

where
Lo (r V (3.5)

Also,
P \ rq• /(3.6)

The second parameter, q, ib a product of the eccentricity and semi-

latus rectum.

P =c (3.7)

One other parameter is required to completely specify the refer-

elnce ellipse. This is the angle w which locates the argument of the
perigee with raspect to some reference direction. The relation (i o. to
the polar angle and argument of the perigee is indicated below and in

Figure 6.

W € -f (3.8)

where f is the true anomaly, the angular displacement in the orbit plane

menasured from the perigee.

The orientation of the reference orbit in space remains to be
specified. This is conventionally done by specifying the angle of inclina-
tion r', the line of ascending node £2, and the epoch time. These six or-
bital elements completely specify the dynamical state of the satellite and

inherently require the momentum and the energy associated in the refer-

ence ellipse to be identical with those of the actual trajectory.
The second order differential equations of motion (3.1) have an

equivalent form as six first order differential equations in the oscillating
elements. In terms of these elements, thc equations of motion in the

oscillating elements are given (Ref. 13) as
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Figure 6a. Trajectory coordinates
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Figure 6b. Instantaneous ellipse coordinates
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t0

(a) dt II

(b) d - d P

(e) l --- P coaf+S 1 sinf

da dfl 1di' cos f

where the quantity SC is defined as

SM z- 4 q sinf + (-- ) + ] (l + cos

"These six differential equations have been programmed for an

I1M 704 with the following auxiliary equations.

V?1
I = + J --' (1 -3 s inz 4, sinza)] + Ze cos f+

rV q
-=0 -"-f-. sin f

V• = z + (V -- rQe cos a)z+ (rSIe sin acos O)z

F'a FW I
n rr sin a
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These equations when programmed along with the various sub-

routines for evaluating the drag coefficient and density provide the

numerical solution to the equations of motion. The variation-of -parameter

method employed does have the disadvantage of singularities for the case of

circular orbits ( a =,0). The equations so chosen have as the independent

variable the polar angle ý which is in effect the true anomaly. At the

terminal phase of the satellite trajectory where the motion is nearly verti-

cal, this Independent variable is a poor choice since small changes in it

are accompanied by large changes in the dependent variable. This how-

ever will occur below 100 km and for all puirposes the satellite has ceased

orbiting. In view of this, the equations are not altered.

IV. NUMERICAL SOLUTION

The equations of motion (3.9) and the various auxiliary equations

have been pr1ogrannned for an MIM 709 using Fortrani language. The

diffe•irntial equations are integrated using the Adanms-Moulton, iungie-Kutta

technique (Ref. 12). This subroutine integrates a set of N simultane-

otts, first order differential equations. The choice of this subroutine

lies in the availablC option of integration stvp)-size. The Adaziis -

Moulton error -con't rol pewrmits adopting a variable step-size, mode 0,

or, a fixed step size, mode 1, both with the fourth order Rtunge-Kutta in-

tegration ,method. Through the use of a variable step-.size, self -hete rinined

by fihe m1agnitude of round-off error and truncation error permitted,

mach ine tilrae can be saved at no loss of dceir rd accuracy. 'T'he user is

free to specify the truncation error which is equivalent to specifying the

number of significant figures. The round-off error control is achieved

with the use of double precision internally. The derivative calculations

are performed in sigle precision.

The variable step-si.?e is limited in range between a lower and

upper bound, The lower bound is chosen as a compromise between the

desired accuracy and machine time. Usually, the low.ver bound is chosen

100 times the upper bound. After considerable experience is obtained

with the progranm, the fixed step-size mcde I can be used which is five
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. times faster than the variable mode. Increments as large as 30 degrees

have been used with small loss of accuracy, as indicated in the compari-

son below (Case 1).

lPllr 12.,l]49 zad 12+.,13,8 r;id

S6791).81676 ki 6793.8713 htin

- .+ 0,1) 0 | ,, .O1 • )05,2

C I 103.1 •,4100 kill 1038 I .909 hill

U. A. 5.14800 ,4 'ad 5.1181- 03.. rtd

f 82 I, .,1 d-. 582 I .8,

rI,.62 'iX l l" Nvwtom• ,/ 0.622I(1 I 0. Nhwtoiiiifg

h 4 16. ki19 4i.i ,16.01171 kill

incremnents a,; large as ninety dogreoes definitely cannot be used.

The acCunracy check is made- with an inclined orbit with no drag.

S•Til! iachiine is required to repeat all pertinent values for twenty rcvolu-

Hions. This was:i achiit-vwd through the sixth decimal place. Similarly,

the ,rate of chanige of right a scension and argument of perigee for an orbit

with no drag were checked with available values deterir'ined from sneries

Hoiutiotis (Ref. 14) and agrted vwith the desired accuracy for the second

order earth potential. Several cases of results are pre.sented below,

(Calc 2).i

1EOUA'1ORAL ORI(3T, 0
?Tl

f h ,•V w a./

0 2-1.8550 0.09999999 8.1569862 0 0 0

1800.000 221.8549 0.01000001 8.1569862 0.078604 0 0.0392223

"7199.999 221.8552 0,09999999 8.1569860 0.3144434 0 -0.1569149

POLAR ORBIT, A = 0

1800.000 ZZ1.8703 0.09999724 8.1569718 -0.0197609 1.5707963 - 0.0000000

POLAR ORBIT, A = 7.5× 10-4 krn/Kg
rn

5 - 1 0.000 22V.7993 0.C997155 8.1559711 - 0.0197676 1.570963 - 0.1000000
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The program has the following features. The atuiospheric density

is obtained from a table rather than an exponential equation, By specify--

ing shape, the decay can be computed for either cylindrical or spherical

satellites or for the case of constant drag coefficient. For the spherical

.. -" or-cylindrical satellite, the drag coefficientis computed on the- basis .of-.

S........ .. the molecular-scale temperature and specified constant accommodation

coefficient. The drag coefficient changs_ only a-flcw__p.er-c.nt-with-alti..

. tude as can be obscrved in Figure 7. These few per cent, however, can

ca.case an additional height loss of one kilometer for every ten revolutions

as shown below for the Case 3 with A/m = IX 10" km 2 /Kg.

N 10

N = 0 G1) = 1.8 C 1) 2.0 C =D.1

f 0 3602.74 3602.68 3602.63

r(km) 6578.1450 6566.8535 6564.8657 6563.7740

h (kil) 200.0000 188.7886 186.7!08 185.629Z

C .0,00000 0.0140897, 0.013.895 0.01 287z6

c (kin) 134.247854 93.8473!4 88.41899 85.514985

It..A. 0 - 0.000004 - 0.000004 - 0.000005

Phi (dug) 0 6A.8325 6Z.8 . 5 62.8325

A much larger effect is shown in the linear eccentricity. For dif-

fuse drag coefficient the vari;.ttion can be greater deponrling upon the defilii-

tion of the re-emission spted ratio.

Normally, interest is shown only for the values of the orbital ele-

ments at perigee and apogee. However, at low altitudes, the perigee is

ill defined and it becomes necessary to define the orbital elementals at

every integration. The altitude for the change in information output can be

selected but it has been found to occur no higher than 150 km though it

7 may be lower.
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"V. AN APPROXIMATE METHOD OF SATELLITE
A-....... DECAY PREDICTIONS

-With the aid of the present computer program, revyisions havc -.

-been-made in the-approximate satellite decay -predictions (Ref.4). -This

program has been valuable in evaluating certain functions and determin-

ing relationships between orbital elements. A brief review will be made

of the approximate method, including the aids furnished fromt-the comp~uting.,

program. A test of the approximate method will also be presented-on a ....

number of earth satellites. The results are very favorable.

The basis of the approximate method lices in the law of conserva-

tion of energy. The drag force is assumed to occur instantaneously

during a given revolution. The energy lost due to the drag is then sub.-

tracted from the satellite energy, an(d the orbital element adjusted to

compensate for this loss. The loss of energy per revolution can be ex-

pressed as

(IED~ I -A1  Cz j ('if
-••-- A(V q) (5.1)

0

The approximations mnade in the equation are within an order of

(Ci. The equation employs an exponential density variation. The density

scale height, G, is computed from the 1959 ARDC Model Atmosphere

(Ref.6) and is plotted in Figure 8. The irregularities between 170 km

and 280 km are due to the variation in molecular temperature.

Expressing the orbit radius, r, as

r =q + c (I - cos f) + (e?)
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the integral can be evaluated in terms of Bessel's -function. The loss

of energy per revolution is then shown to be

dED F(. (C DA) KM (I-)p ... e) k
.C _expI.. . .. .-. .. (5.-l--k

(5.2)>

+ - I(k) e 0.125 -0.375e) +

where the argument k re.presents the product of density scale height, G,

and linear eccentricity, c, the terms

I A (k) ý and I (k)
exp(k) C x rA

deviate from unity only as k -- 0. For values of k > 4, the terms art!

< 1.01. For k > >4, Equation (5.Z) is written as

2 (CDA) KM( - 0) p + 0 + - --.-75J (5.3)

To obtain the variation in the orhit clue to this energy lotis,

differentiate the total energy associated with the initial orbit.

K~m ( dcs+
dE N ++ de (5.4)

Thus a change in orbit energy will affect the perigee height and

linear eccentricity. From the two equations, the motion of perigee and

linear eccentricity can be evaluated. Frequently, the perigee and linear

"eccentricity are combined into one parameter, the semi-major axis

from which the orbital period is determined.

2zrKM_ q =a -c , Pf = • (5.5)

TR 465 39

''Ill'- ---l; -al



0

94or

4a

U

bi

u0

i- 4)r,

o

14

.. L

04.

TR 465 40



,'iN • ,N '" d-• \• •1,, [ "-0 •-T - 0- .--" ,' !,<')([ t. • • , (5.6)

This can be related directly to rate of decrease in orbital peri-

od by

dP 3 P da
•" a-2 d" (5.7)

The success of orbit decay predictions based on the rate

of decrease in orbital period suggests that the two variables probably

are independent for at least large values of linear eccentricity. There

is no simple equation which can be used to separate dq/DN and dc/dN.

The ratio dq/dc can be approximated with varying orders of accuracy.

The imlportant factor about this ratio is its independence from the

satellite size and shape, though it does depend upon density. With this

in mind the variation of dq/dc with the linear Ccc entricity Was con•lputt(I

numerically using the program outlined previously. The results are

plotted in Figure 9 au 1/1 + (dq/dc) which has lirnittj of 0 and J. This

iiiforInati on can he used directly to separate the variables. The next

stepl in forriling aln approxim|ate equation for prodicting decay is

integration of Equation (5.6). Integration with limits extending fromir

the initial line;ar eccentricity to zero or the start of spiral decay,

depending upon initial altitude results in E'quation (5.8).

No - NI du~I~1 1ALI+t ---- ~ (5.8)

The product ( 1 + (dq/dc)), r7- is proportional to 47e for all

values of c > 150. So in fact, dq and dc are independent for all values of

c > 150. As will be shown later, values of c < 150 are obtained only near

the very end of the satellitc llfctlrne.

The orbital lifetime is obtained after further integration and is

expressed as

N-N- , c > 150 (5.9)

SThe density parameter, p '/U, for various altitudes is presented

in Figure 10.
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, Figure 11. Lifetime of an earth satellite in A circular orbit
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An independent exact solution is possible for the asymptotic case

of c 0. For the circular orbit,

Cr pr (5.10)

The solution is plotted in Figure 1I for a family of load factors.

In th~is figure the load factor of Sputnik V rocket was determined. Tlhe

effect of the earth' a oblateness on the altidude of the satellite has an

important effect upon the ballistic coefficient value determined.

A measure of the validity of any assumption is in the result. For

the case of Equation (5.8), it was found in comparing the actual satelllte'u

motion and the machine computations, that the prediction became poorer
as the linear eccentricity increased. It was first thought that since only

terms of order e were used, the equation should not be expected to be
useful beyond 600 or 800 revolutions. It was found, however, than an

empirical factor of (c/l00)0 *3 66 could be included in Equation (5.8)

which then resulted in good agreement with decayed satellites. The Cm-

pirically corrected equation is then

N c-inm \e /c \ 0 366

This equation has been plotted in Figure 12. With either Figure 12 or

Equation (5, 11), the satellite lifetime and load factor can he determined
using two values of livar eccentricity separated by a known number of

revolutions.

In the absence of reliable satellite data at low eccentricities,

machine computations were used to evaluate Equation (5.11). Equation
(5.1 )was found to predict too few a number of revolutions. This could be

corrected by using the (I + dq/dc) factor which must be corrected to

equal zero at c > 200. The final equation is

T '.2" T• D pq d c- (5.12)
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This equation agreed with numerical calculations and satellite data at
all values of linear eccentricity. In Figure 12, a comparison is made

of Equations (5.11) and (5.1Z). It is seen they are identical for c > 150
as expected. The nonlinear term in Equation (5.12) is the source of

longer lifetime at low eccentricities than predicted by linearized theory.

Equation (5.12) is also plotted in Figure 14 using a larger scale

in order to show the mnotion of 1961 Zeta and 1959 Epsilon 11. These two
objects were plotted according to -their observed altitude and linear ec-

centricity. In this comparison and others which follow, the source of
information is the Space Track Dulletins. It should be recognived that

this orbit information is preliminary and in most cases is revised after

more observations are received and further analysis made. The re-

vised'orbit information, however, usually lags far behind the satellite's

lifetime. The working anaaysis should, therefore, be designed for the

jprelimiziary data.

1,1he approximate , quat itn ( . 1') as fitted to satellite datla is

plotmld in F'iguores 13 and i os a. Ii fic t ion of linear eccentricity. The

rtMt1 i I fazMoily of cur ves f--,Vr Vitch of the various altitudes. There

is at slight decrease in slope at low vccusitricities with Increasing al-

ttitude;. iThe 11o1d lva r t.e rmt added at low eccentri cities is a function

of a•tIitude, The family of curves can he reduced to a single curve,

exc-l'uadinlg Ihe lionlini ln Lei-erI, itsllg tihe rnor alizing height factor

as plotted in Figure 15. Slight corrections are present for low eccentrici-

ties.

Since it has been possible to collapse the family of curves into one

curve, the total number of rvvhInhions and ballistic coefficient can be

separated. Using curves of total number of revolutions versus linear ec-

centricity the ballistic coefficient can be determined. This has been done

in Figure 16 for a large number of satellites. The ballistic coefficients

for each satellite is listed in Table 5-1.
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The satellites plotted in Figure 16 have inclined orbits ranging

from 28 to 82 degrees. Their perigee heights range from 178 to 300

kim. Even with all these wide differences, the variation of revolutions

and linear eccentricity were similar and could be plotted on the same

curve. Figure 16 demonstrates the close approximation of Equation

(5.12) with actual satellites, The decay of 1960 Kappa appeared unique

due to its marked departure from the empirical curves. The marked

shift in the data from 1960 Sigma should be attributed to poor orbit in-

formation at the time of demise. The IBM program to simulate 1960

Sigma was evaluated at the wrong value of area-ta-mass ratio.
0

VI. DISCUSSION OF SATELLITE DECAY

The purpose of this study has been to develop techniques for the

analysis of satellite motion near its demise. It is well known that as

the satellite approaches its demise, the usual secular motions undergo

rapid clhafnges as a result of the predominance of drag force. The ap-

proximate nmethod developed anid discussed previously, is sufficient

in most cases to predict the number of revolutions before decay. This

is only a gross estimate and necessarily excludes effects such as the

oblate earth and a rotating atmosphere.

To explore in detail the three-dimensional motiorn of the satellite,

the program just described has been written. It has not been possible to

use thin program thoroughly in an analysis and hopefully further use and

analysis can be made at a later date. In the meantime a brief analysis

was completed which permits a discussion of the more prominent

features of the satellite motion.

The first orbit element to be studied was the linear eccentricity.

This would also provide a check to the approximate solution. The rate

of chang. of linear eccentricity per rAevolution with various ballistic coef-

ficients is presented in Table 6-1. Thc variation of linear eccentricity

- for both the sphere and the cylinder were also determined assuming no

heat transfer (Sr ± S) and plotted in Figure 17. In Figure 17, it can be

seen that the linear eccentricity decreases as expected until the satellite
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descends to an altitude of Z2O km, at which time, the linear eccentricity

experiences short but almost instantaneous decreases,

Further study of satellite motion at very small linear eccentricity

indicated poor agreement with the approximate method. Consequently,

corrections were added to the approximate curves. The numerical cal-

culations were the only means of obtaining representative satellite motion

at small linear eccentricity.

Additional orbit elements were studied and are also reported in

Table 6- 1. The motion argument of perigee in the absence of drag can

be described by Equation (3.9). At inclinations greater than 63,34 deg,

the perigee moves opposite the satellite while at lower inclinations, the

motion is in the direction of the satellite. For small drag forces

(D/w 5 Z.4978 X 10"4), no effvct due to drag is noticed. However, for

large.drag forces, radical effects are observed. A sample case is pre-

sented in Figure 18 where at about 150 kin, (D/w z 90), large sudden

variations in the perigee motion appear. The motion, however, rtunaine

periodic until an altitude of 110 kin whore the perigee then begins to travel

at the rate of phi, the polar angle. It is at thi- s;tne tine that the emis -

sivity has reached a niaxiniwu and begun to increase toward one. Further

detail can be seen in Figures 19 and 20. These two curves are differ,,nt

and the dilferenc e may be due to the initial heights. Similar differences

have been ob•erved in sat ellite decay. For instance, the unusual be-

havior of 1960 Kappa as plotted in .igure 16a. The usual behavior is

spiral decay at a conS•tant perigee distance. A possible explanation for

1960 Kappa's buhaviu. is assuming the ballistic coefficient increased

in soni'e ianler.

The eccentricity undergoes unusual changes at low altitudes. It

is seen that the elliptical orbit gradually shrinks to some magic mini-

mum, which appears also to be a function of initial conditions, and then

it rapidly increases toward one as the satellite path becomes ballistic.

An example of this behavior is presented in Figure Zl. Table 6-Z pre-

sents some observed minimum values of eccentricity during several

SIBM runs.
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Figure Z1. Variation of eccentricity at demise
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Table 6-Z

Minimum Values of Eccentricity
*

Hi Ei c. C1A/w E c

154 0.05 343 1.3 0,001309 8.51

194 0.0097 64,Z 0.87 0.003825 21

169.8 0.00101 6.64 0.87 0.0007846 5.1

200 0.01483 99.00 1.0 0.00384 Z5

150 0.00761 50.054 1.0 0.003 * 19

200 0.00075 4.966 1.0 0.0004455 Z.92615

250 0.0037576 25 1.0 0.00107 7.028
250 0.0074871 50 1.0 0.001a 8.5

140 0.044 300 1.0 0.0015 9.68

200 0.00754 50 1.0 0.0027 18.03

150 0.0151 100 1.0 0.001 9.38

The inotion of the perigee and perigee altitude can be seen in

Figures 22 and 23. The very unusual behavior of the perigee height is

due to the earth's oblateness. Figure Z4 demonstrates the rapidity of

altitude loss with large drag forces. This curve is an over exaggeration

of real satellites as it is based on free molecular flow even at low al-

titudes of 100 kin. In reality, the drag coefficient is smaller than pro-

dicted by free molecular theory.

The effect of drag on the argument of right ascension is also

not noticeable. With larger drag forces there is a very small increase

in the backward motion of the right ascension. Even at very large

forces, the change in the motion of arguzm•nt of right ascension is small

and nearly unnoticeable.

In all of the above computations, the atmosphere is assumed to

rotate with the earth. This wind velocity when added to the satellite

velocity produces an increased drag force. The enlarged drag force

augments the rate of motion of all the elements. A comparison is shown

in Table 6-1 between the wind on and wind off. The increase in rate In

some cases is as high as ten per cent. The assumed wind velocity has

not been verified and quite possibly it is too large. The assumption
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becomes poorer with increasing altitude.

The initial conditions for Figures 19 through 24 are identical.

As a final comparison, the approximation often made of a con.

stant drag coefficient equal two was compared to one computed. Figure

25 demonstrates that CD =2.0 is a poor assumption. It resuited in a

loss of 0.9 kin/rev linear eccentricity and a 0.3 kmn/rev loss in altitude

over that for the computed drag coefficient using Equations (2.18)

through(2.40). These are serious errors and point the need to use the

more accurate representations for drag coefficient.

VII. CONCLUSIONS

A discussion of satellite motion near the end of its lifetime has

been presented. The motion was observed to be very irregular under

large drag forces. The effect of the irregular motion on the total

Htatellite lifetime was small. During the time of the irregular motions,

the .iatillito is expected to have no more than 10 to 30 revolutions re-

maining before decay. This is a matter of one or two days. For satel-

lite decay predictions better than this, numerical calculations such as

those used here should be employed. The program written for this

study is well suited for the short range (N < 500 revolutions) predic-

tUunb. Long range predictions probably require too much machine time.

Considerable effort was made to improve the approximate method.

Satellite observations and numerical computations were used to adjust

the approximate method. The resulting equation when used for decay pre-

dictions is accurate to three significant figures. The equation graphed

is a very good way to handle the primary satellite orbit data. On the

graph it is clear in what manner the satellite decays. The significance

of the empirical factor (c/10O) 0'366 required to correct the approximate

equation has not been studied. It would be interesting to attempt to dis-

cover the effect it has on the assumption made at the beginning of the ap-

proximate method.
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